


For the second property seconds in the second in

MICROCOPY RESOLUTION TEST CHART A PATIONAL BUREAU OF STANDARDS - 1962 - 2

D-A148 246

FINAL TECHNICAL REPORT

STUDY IN MOLECULAR LASERS

by

Professor George Burns

Department of Chemistry

University of Toronto

DITY FILE COPY

Inclusive Dates: 1 Novemeber 1980 - 30 April 1984

AFOSR #81-0028

Approved for public release; distribution unlimited.

October 1984

84 11 27 005

REPORT DOCUMENTATION PAGE								
1. REPORT SECURITY CLASSIFICATION unclassified		1b. RESTRICTIVE MARKINGS						
unclassified 26 SECURITY CLASSIFICATION AUTHORITY		2 DISTRIBUTION AND LITY OF REPORT						
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release						
2b. DECLASSIFICATION/DOWNGRADING SCHEE	Distribution unlimited							
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)						
	AFOSR-TR- 84.1038							
6. NAME OF PERFORMING ORGANIZATION	7a. NAME OF MONITORING ORGANIZATION							
George Burns University of Toronto	(If applicable)	AFOSR/NC						
6c. ADDRESS (City, State and ZIP Code)	<u> </u>	76. ADDRESS (City,	State and ZIP Cod	le)				
Department of Chemistry	Bldg. 410							
80 St. George Street	Bolling AFB D.C. 20332-6448							
Toronto, Ontario M5S 1A	1 Canada	<u> </u>						
ORGANIZATION	(If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR - 81-0028						
AFOSR 8c ADDRESS (City, State and ZIP Code)	NC	10 SOURCE OF FUNDING NOS.						
Bldq. 410		PROGRAM	PROJECT	TASK	WORK UNIT			
Bolling AFB 20332-444		ELEMENT NO.	NO.	NO	NO.			
11. TITLE (Include Security Classification)		61102F	Sitt	£]				
Study in Molecular Laser	S		į.					
12. PERSONAL AUTHOR(S) George Burns, H. D. Kutz, L. K. Cohen, T. C. Billard								
12. TYPE OF PERCET 125 TIME O	OVERED	14 2475 05 0500	27 /V W D	15. PAGE CO	UNT			
Final FROM 1 NOV 80 TO 30Apr 84 (17 Mo. Day)								
16. SUPPLEMENTARY NOTATION								
17. COSATI CODES	18 SUBJECT TERMS (C							
FIELD GROUP SUB. GR.	Chemistry.	try. Kinetic methods. Electronic emissions						
	tory calcul	o-sensitive surfaces. Classical trajec- ulations of simple chemical reactions. +						
19. ABSTRACT (Continue on reverse if necessary and identify by block number)								
- A sensitive LIF system								
The signal was accumulated and analyzed by employing a Tektronix R7912								
transient Digitiser and a PDP-ll minicomputer. Reactivity of HF(v=5) was studied. Using the same equipment, a time-delayed photoemission from a								
trialkali photosensitive semiconductor was observed and results are now								
being examined.								
Using 3-D trajectory calculations a new computational observable, the								
relative nonequilibrium distribution (RNED) function at the steady state								
was determined for the Br + Ar reaction at 3500K. It is characterized by								
one adjustable parameter equal to 12, while the transition state theory prescribes that it should be infinitely large. RNED will be used to test								
and refine modern theories of reaction kinetics.								

2. ISTRIBUTION/AVAILABILITY OF ABSTRA	21 ABSTRACT SECURITY CLASSIFICATION Unclassified							
UNCLASSIFIED/UNLIMITED 🖫 SAME AS RPT	Unclassii	150	,, <u>, , , , , , , , , , , , , , , , , , </u>					
22a. NAME OF RECPONSIBLE INDIVIDUAL	22b TELEPHONE NI (Include Area Co	de)	22c OFFICE SYMB	or				
LEE E. Miyers, CMA, USAF (CON) TWO-4963								

Unclassified						
SECURITY CLASSIFICATION OF THIS PAGE						
18.	Laser-induced	chemical	reactions.		I	
	•					

The experimental approach to the study of chemical reactions in molecular lasers was centered around a sensitive LIF apparatus in which reactions were generated by a Quanta Ray Nd:YAG plus a dye laser, which was tuned using a photoacoustic detector. Reactivity of HF (v=5) with unsaturated hydrocarbons was studied. 1 Using the same equipment, it was possible to observe a timedelayed multielectron photoemission (TDMP) from a trialkali antimonide photocathode.² The initiation of this photoemission is correlated to irradiation of photocathode with a weak (less than 1 femptojoule/cm²) light pulse which appeared to be statistical. However generation of multielectron pulses from the surface of the photocathode was not statistical with up to 30 electrons leaving the photosensitive surface within the time resolution of the equipment. Such pulses are separated in time during which there are no electrons emitted. The phenomenon is now being studied as a function of light intensity, temperature, and the wavelength of the incident radiation.

A comprehensive review of experimental studies of dissociation recombination reactions was completed. $^{\scriptsize 3}$

Diatom dissociation and atomic recombinations, occurring in molecular lasers, were studied using the 3-D trajectory calculations technique, in which over 10⁵ trajectories were generated. The single uniform ensemble method previously employed in 3D classical trajectory calculations (H. D. Kutz and G. Burns, J. Chem. Phys. 72, 3652 (1980) was used. It was applied to the Br₂ + Ar system to study nonequilibrium effects

in diatom dissociation over a wide temperature range. It was found that, for a given large set of trajectories, observables, such as reaction cross sections or rate constants, are independent within four significant figures of the initial distribution function. This indicates a high degree of reliability of the single uniform ensemble method, once the choice of a set of trajectories is made. In order to study dissociation from the low lying energy states, the uniform velocity selection method in trajectory calculations was used. It was found that dissociation from these states contributes but little to the overall dissociation reaction. The latter finding is consistent with the attractive nature of the potential energy surface used, and constitutes an argument against those current theories of diatom dissociation reaction which explains experimental data by postulating a high probability of dissociation from low lying energy states of diatoms. It was found that the contribution from the low lying states to dissociation can be estimated with good accuracy using information theory expressions. Temperature dependence of nonequilibrium effects was investigated between 1 500 and 6 000°K. In this range the nonequilibrium correction factor varies between 0.2 and 0.5. Angular momentum dependence of such observables as reaction rate constant and reaction cross section was investigated.

It was possible to define a new computational reaction kinetic "observable," $d^{SS}(E)$, the relative nonequilibrium energy distribution (RNED) function at the steady state. ⁵ The

 $d^{SS}(E)$ is a plot of relative molecular densities of diatoms \underline{vs} . their internal energies. The RNED, obtained as a histogram, proved to be significant for several reasons, one of which was that it can be described with a remarkably high degree of precision by a simple algebraic function. The latter is calculated from known constants and physically meaningful constraints. It required only one adjustable parameter, a. For the case of Br₂ dissociating in Ar at 3 500°K, $a = 12.0 \pm 0.3$, which is intriguing because the transition state theory prescribes a = +∞ for all reactions. The study of d(E) and of a might provide a novel method for testing the transition state and other quasiequilibrium theories. Preliminary results indicate that the much used strong collision assumption of unimolecular reaction theories is inadequate in describing reactions occurring on strongly attractive surfaces. 6 Much work on this project is now Codes being prepared for publication. Ava .. and/or f moial

References

- Beck, W. H., Burns, G., Can. J. Chem., Nov. 1 issue (in press) (1984).
- 2. Billard, T. C., Burns, G., Nature, 306, 24.-2.8 (1983).
- Boyd, R. K. and Burns, G., "Shock Tube Chemistry," pp. 131-181 (1981).
- 4. Kutz, H. D. and Burns, G., J. Chem. Phys., 74, 3947-3952 (1981).
- Burns, G. and Cohen, L. K., J. Chem. Phys. 78, 3245-3251 (1983).
- 6. Burns, G. and Cohen, L. K., J. Chem. Phys., Dec. 1 issue (in press) (1984).

END

FILMED

1-85

DTIC